492 research outputs found

    Gravitational strings. Do we see one?

    Full text link
    I present a class of objects called gravitational strings (GS) for their similarity to the conventional cosmic strings: even though the former are just singularities in flat spacetime, both varieties are equally "realistic", they may play equally important cosmological r\^ole and their lensing properties are akin. I argue that the enigmatic object CSL-1 is an evidence in favor of the existence of GS.Comment: The published version. Minor correction

    The parallax distorsion via a weak microlensing effect

    Get PDF
    Parallax measurements allow distances to celestial objects to be determined. Coupled with measurement of their position on the celestial sphere, it gives a full three-dimensional picture of the location of the objects relative to the observer. The distortion of the parallax value of a remote source affected by a weak microlensing is considered. This means that the weak microlensing leads to distortion of the distance scale. It is shown that the distortions to appear may change strongly the parallax values in case they amount to several microseconds of arc. In particular, at this accuracy many measured values of the parallaxes must be negative.Comment: 34 LaTeX pages, 12 PostScript figure (epsfig.sty

    Gravitational-Wave Stochastic Background from Kinks and Cusps on Cosmic Strings

    Full text link
    We compute the contribution of kinks on cosmic string loops to stochastic background of gravitational waves (SBGW).We find that kinks contribute at the same order as cusps to the SBGW.We discuss the accessibility of the total background due to kinks as well as cusps to current and planned gravitational wave detectors, as well as to the big bang nucleosynthesis (BBN), the cosmic microwave background (CMB), and pulsar timing constraints. As in the case of cusps, we find that current data from interferometric gravitational wave detectors, such as LIGO, are sensitive to areas of parameter space of cosmic string models complementary to those accessible to pulsar, BBN, and CMB bounds.Comment: 24 pages, 3 figure

    Microarcsecond instability of the celestial reference frame

    Get PDF
    The fluctuation of the angular positions of reference extragalactic radio and optical sources under the influence of the irregular gravitational field of visible Galactic stars is considered. It is shown that these angular fluctuations range from a few up to hundreds of microarcseconds. This leads to a small rotation of the celestial reference frame. The nondiagonal coefficients of the rotation matrix are of the order of a microarcsecond. The temporal variation of these coefficients due to the proper motion of the foreground stars is of the order of one microsecond per 20 years. Therefore, the celestial reference frame can be considered inertial and homogeneous only to microarcsecond accuracy. Astrometric catalogues with microarcsecond accuracy will be unstable, and must be reestablished every 20 years.Comment: 5 pages, 2 figures, accepted to MNRA

    Astrometric Method to Break the Photometric Degeneracy between Binary-source and Planetary Microlensing Perturbations

    Get PDF
    An extra-solar planet can be detected by microlensing because the planet can perturb the smooth lensing light curve created by the primary lens. However, it was shown by Gaudi that a subset of binary-source events can produce light curves that closely resemble those produced by a significant fraction of planet/star lens systems, causing serious contamination of a sample of suspected planetary systems detected via microlensing. In this paper, we show that if a lensing event is observed astrometrically, one can unambiguously break the photometric degeneracy between binary-source and planetary lensing perturbations. This is possible because while the planet-induced perturbation in the trajectory of the lensed source image centroid shifts points away from the opening of the unperturbed elliptical trajectory, while the perturbation induced by the binary source companion points always towards the opening. Therefore, astrometric microlensing observations by using future high-precision interferometers will be important for solid confirmation of microlensing planet detections.Comment: total 5 pages, including 1 figure and no table, ApJ, submitted, better quality pdf file is avalilable at http://astroph.chungbuk.ac.kr/~cheongho/publication.htm
    • …
    corecore